1. *f* is concave up on (-2,2) since f'' > 0 and *f* is concave down on $(-\infty, -2) \cup (2, \infty)$ since f'' < 0. x = 2 is a point of inflection since f'' changes signs from positive to negative and x = -2 is a point of inflection since f'' changes signs from positive.

2. f is concave up on $(2,\infty)$ since f'' > 0 and f is concave down on $(-\infty, 0) \cup (0, 2)$ since f'' < 0. x = 2 is a point of inflection because f'' changes signs from negative to positive.

3. *f* is concave up on $(-\infty, 2) \cup (4, \infty)$ since f'' > 0 and *f* is concave down on (2,4) since f'' < 0. x = 2 is a point of inflection since f'' changes signs from positive to negative and x = 4 is a point of inflection since f'' changes signs from positive

4. f is concave up on $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ since f'' > 0 and f is concave down on $\left(0, \frac{\pi}{2}\right) \cup \left(\frac{3\pi}{2}, 2\pi\right)$ since f'' < 0. $x = \frac{\pi}{2}$ is a point of inflection since f'' changes signs from negative to positive and $x = \frac{3\pi}{2}$ is a point of inflection since f'' changes from positive to negative.

- 5. *f* has a local maximum at x = -4 since f'(-4) = 0 and f''(-4) = -14. 6. *f* has a local minimum at $x = \frac{\pi}{6}$ since $f'\left(\frac{\pi}{6}\right) = 0$ and $f''\left(\frac{\pi}{6}\right) = 1$.
- 7. Crit. pts: x = 0, 2

x = 0 is a relative maximum because f'(0) = 0 and f''(0) = -6.

- x=2 is a relative minimum because f'(2)=0 and f''(2)=6.
- 8. Crit. pts: $x = \pm 2$

x = -2 is a relative maximum because f'(-2) = 0 and f''(-2) = -1.

x=2 is a relative minimum because f'(2)=0 and f''(2)=1.

9. Crit. pts: $x = \frac{3\pi}{4}, \frac{7\pi}{4}$ $x = \frac{3\pi}{4}$ is a relative maximum because $f'\left(\frac{3\pi}{4}\right) = 0$ and $f''\left(\frac{3\pi}{4}\right) = -\sqrt{2}$. $x = \frac{7\pi}{4}$ is a relative minimum because $f'\left(\frac{7\pi}{4}\right) = 0$ and $f''\left(\frac{7\pi}{4}\right) = \sqrt{2}$.

10. 2004 AB 4/BC 4 See AP Central for full solution.
(a) Show with implicit diff.
(b) y = 2

(c) $\frac{d^2y}{dx^2} = -\frac{2}{7}$. At (3, 2), $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2} = -\frac{2}{7}$ so the curve has a local maximum at (3, 2) by the Second Derivative Test.

11. (a) f is increasing on $(-\infty, 0)$ and $(3, \infty)$ because f'(x) > 0.

f is decreasing on (0, 3) because f'(x) < 0.

(b) f has a relative maximum at x = 0 because f'(x) changes from positive to negative there.

f has a relative minimum at x = 3 because f'(x) changes from negative to positive there.

- 12. (a) f is decreasing on $(-\infty, -1)$ and (3, 5) because f'(x) < 0. f is increasing on (-1, 3) and $(5, \infty)$ because f'(x) > 0.
 - (b) f has a relative minimum at x = -1 and x = 5 because f'(x) changes from negative to positive there.

f has a relative maximum at x = 3 because f'(x) changes from positive to negative there.

13. *f* has an inflection point at x = 1 and at x = 7 because f''(x) = 0 and f''(x) changes from positive to negative or vice versa there. *f* does not have an inflection point at x = 4 because f''(x) does not change signs at x = 4.

14. a = 6, b = 9

15.

Point	f	f'	f''
Α	+	+	_
В	+	0	_
С	_	-	+